사이언스타임즈 로고

기초·응용과학
김병희 객원기자
2017-06-29

'유전자 화석' 이용해 신약 만든다 원시 항바이러스 방어체계 활용

  • 콘텐츠 폰트 사이즈 조절

    글자크기 설정

  • 프린트출력하기

원시 생명체의 단순한 항바이러스 방어체계를 이용한 새로운 치료제 전달시스템이 개발됐다.

미국 마운트 사이나이의대 연구팀은 인체가 현재 크게 의존하고 있는 정교하고 강력한 방어시스템에도 불구하고, 우리 세포 안에는 초기 생명체가 바이러스 감염으로부터 스스로를 보호하는 수십억 년 된 원시시스템이 남아있으며, 이를 이용해 새로운 치료제 전달시스템을 개발할 수 있다고 밝혔다.

연구팀은 과학자들이 유익한 바이러스를 이용해 약물이나 치료법을 직접 병소 조직에 전달할 수 있는 방법을 고안한다면 이 단순한 원시 시스템이 다가오는 정밀의학 시대의 중요한 기반을 형성할 수 있을 것이라고 말했다.

바이러스 또는 RNA의 활성을 조작할 수 있는 고대의 항바이러스 생물학적 활성을 보여주는 RNA 현장 하이브리드화(in situ hybridization). 빨간색, 파란색 및 녹색은 각각 리보솜 RNA, DNA 및 바이러스 유래 세포질 처리 마이크로 RNA를 나타낸다.  Credit : The tenOever lab / Icahn School of Medicine at Mount Sinai
바이러스 또는 RNA의 활성을 조작할 수 있는 고대의 항바이러스 생물학적 활성을 보여주는 RNA 현장 하이브리드화(in situ hybridization). 빨간색, 파란색 및 녹색은 각각 리보솜 RNA, DNA 및 바이러스 유래 세포질 처리 마이크로 RNA를 나타낸다. Credit : The tenOever lab / Icahn School of Medicine at Mount Sinai

“면역반응 없는 전달 시스템 고안 가능”

과학저널 ‘네이처’(Nature) 28일자 온라인판에 발표된 이번 연구에서, 바이러스 공학센터 이사인 벤저민 텐오버(Benjamin R. tenOever) 교수는 핵이나 미토콘드리아가 없는 단일 세포로 이루어진 단순한 생물체인 최초의 원핵생물로 거슬러 올라가 3세대에 걸친 항바이러스 방어시스템의 진화를 추적했다.

연구팀은 원래 바이러스로부터 세포를 방어하기 위해 고안된 이 원시 시스템을 이용한 자가 복제RNA를 만들어, 이를 통해 질병에 감염된 조직에 치료제를 전달하는 것이 가능하다고 말했다. 이 원초적 시스템을 이용함으로써 RNA가 인체 방어체계의 면역반응에 상관 없이 원하는 바이러스 속성을 갖도록 설계할 수 있다는 것이다.

텐오버 교수는 “이번 발견은 생명체가 어떻게 진화했으며 병원체들이 이 진화의 궤적에 어떻게 영향을 미칠 수 있었는지를 보여준다”며, “우리의 고대 세포 조상들은 바이러스와 싸울 수 있는 방법을 발전시켜야 했고, 바이러스가 진화하면서 똑같이 이런 시스템들도 진화했다”고 설명했다.

RNA 기반의 치료제를 개발할 수 있는 고대 항바이러스 생물학적 활성을 보이는 세포의 현미경 사진(녹색).  Credit : The tenOever lab / Icahn School of Medicine at Mount Sinai
RNA 기반의 치료제를 개발할 수 있는 고대 항바이러스 생물학적 활성을 보이는 세포의 현미경 사진(녹색). Credit : The tenOever lab / Icahn School of Medicine at Mount Sinai

원핵생물로 거슬러 올라가 3세대 진화 추적

그는 이어 “우리는 이제 이전보다 더 정밀하게 새로운 치료 목표를 달성할 수 있는 치료용 벡터 혹은 RNA를 만들기 위해 일종의 ‘유전자 화석’인 이 원시 항바이러스 시스템을 활용할 수 있다”고 말하고, “여기에는 필요로 하는 표적이나 조직에 유전자와 단백질, 다른 치료용 분자를 전달하거나 편집하는 일이 포함된다”고 전했다.

텐오버 교수팀은 이런 목표를 달성하기 위해 메릴랜드대와 펜실베이니아대 및 프랑스 파스퇴르 연구소 연구원들과 협력해, 그들 표현에 따르면 최초의 원핵생물로 거슬러올라가 3세대에 걸친 항바이러스 시스템의 진화를 추적해야 했다.

연구팀은 최초의 방어시스템이 DNA로 만들어진 한가지 유형의 바이러스에 감염된 세포에서 나타났다고 말한다. 이 세포들의 생명체를 구성하는 기본요소 중 일부는 수많은 필수적 세포 과정을 위해 특별한 RNA들을 다듬는 일에 관여했다. 이 도구는 본질적으로 RNase III 핵산분해효소라는 단백질 가위 계열이었다. 이 단백질 가위들은 많은 세포 기능에 사용되었지만 핵과 미토콘드리아를 가진 더 현대화된 진핵세포와 RNA 바이러스가 등장하자 항바이러스 기구로 바뀌었다고 텐오버 교수는 말했다.

연구를 수행한 미국 마운트 사이나이의대 벤저민 텐오버 교수. Credit : The tenOever lab / Icahn School of Medicine at Mount Sinai
연구를 수행한 미국 마운트 사이나이의대 벤저민 텐오버 교수. Credit : The tenOever lab / Icahn School of Medicine at Mount Sinai

방어체계에 대한 민감성 조절해 치료물질 전달

병원체와 인간 사이의 전쟁, 다른 생명체들 사이의 전쟁이 이후 더 강도가 높아지고 항바이러스 방어체계가 신속하게 진화하면서 단순한 RNase III 기반 시스템은 쓸모가 없게 되었다. 대신 여러 다른 방어체계가 개발돼 궁극적으로 현재 쓰이는 인터페론 시스템이 나오게 되었다는 것.

텐오버 교수는 “RNase III 방어체계와 달리 인터페론 시스템은 RNA 기반이 아닌 단백질 기반으로서 수십만 가지의 서로 다른 구성요소를 만들어 바이러스와 싸우고 있으나 이런 시스템 간에는 여전히 진화적 연계성이 있다”며, “이들 경로에 있는 모든 주요 역할자들은 서로 관련이 있고 초기 RNase III 버전 중 약간은 여전히 우리 세포 안에 존재한다”고 말했다. “일반적으로 생명은 결코 새로운 것을 발명하지 않고 옛 것을 재창조해 간다”는 것.

현재 텐오버 교수가 연구하고 있는 플랫폼은 이 RNase III 핵산분해효소 방어체계에 극히 민감한 가공된 바이러스 혹은 간단한 자가복제 RNA를 사용하고 있다. 연구팀은 RNA나 가공 바이러스의 방어체계에 대한 민감성을 조절해 유전자 편집이나 생물학적 치료물질 같은 원하는 것을 전달할 수 있는 충분한 시간을 벌 수 있다고 믿고 있다.

텐오버 교수팀은 원시 방어시스템과 관련된 많은 것을 실험을 통해 관찰했으나, 관찰된 것에 대한 근본 원인을 설명하기가 어려웠다. 초기의 발견과 그 결과로 가능해진 기술 덕분에 텐오버 교수는 2012년에 200만 달러의 대통령 연구기금을 수여받아 이 자금으로 연구 결과를 한데 모아 항바이러스 시스템의 진화 역사를 추적할 수 있었다. 이번 ‘네이처’ 논문은 그 성과를 기술한 것이다.

김병희 객원기자
kna@live.co.kr
저작권자 2017-06-29 ⓒ ScienceTimes

관련기사

목록으로
연재 보러가기 사이언스 타임즈에서만 볼 수 있는
특별한 주제의 이야기들을 확인해보세요!

인기 뉴스 TOP 10

속보 뉴스

ADD : 06130 서울특별시 강남구 테헤란로7길 22, 4~5층(역삼동, 과학기술회관 2관) 한국과학창의재단
TEL : (02)555 - 0701 / 시스템 문의 : (02) 6671 - 9304 / FAX : (02)555 - 2355
정기간행물 등록번호 : 서울아00340 / 등록일 : 2007년 3월 26일 / 발행인 : 정우성 / 편집인 : 윤승재 / 청소년보호책임자 : 윤승재
한국과학창의재단에서 운영하는 모든 사이트의 콘텐츠는 저작권의 보호를 받는 바 무단전재, 복사, 배포 등을 금합니다.

사이언스타임즈는 과학기술진흥기금 및 복권기금의 지원으로 우리나라의 과학기술 발전과 사회적 가치 증진에 기여하고 있습니다.