사이언스타임즈 로고

정보통신기술
연합뉴스
2024-10-15

오차 최대 40% 줄인 인공지능 기반 소재 설계 기술 개발 KAIST "화학 기본 기념 학습, 예측 성능 획기적 높여"

  • 콘텐츠 폰트 사이즈 조절

    글자크기 설정

  • 프린트출력하기

예측 정확도를 획기적으로 높인 인공지능(AI) 기반 소재 설계 기술이 개발됐다. 한국과학기술원(KAIST)은 화학과 이억균 명예교수와 김형준 교수 연구팀이 AI를 바탕으로 소재의 물성을 예측하는 기술인 '프로핏-넷'(PROFiT-Net)을 개발했다고 9일 밝혔다.

연구팀은 창원대 생물학화학융합학부 김원준 교수, 미국 UC 머세드 응용수학과 김창호 교수 연구팀과 공동연구를 통해 소재의 결정 구조뿐만 아니라 최외각 전자 배치, 이온화 에너지, 전기음성도 등 화학의 기본 개념을 학습해 AI 성능을 획기적으로 높이는 데 성공했다.

기존 모델과 연구팀이 개발한 '프로핏-넷'의 예측 오차 비교 ⓒKAIST 제공

김형준 교수는 "AI 기술이 기초 화학 개념을 바탕으로 더 발전할 수 있다는 가능성을 보여줬다"며 "반도체 소재나 기능성 소재 개발 등 다양한 분야에 활용할 수 있을 것"이라고 말했다.

이번 연구 결과는 국제 학술지 미국화학회지(Journal of the American Chemical Society)에 지난달 25일자로 실렸다.

연합뉴스
저작권자 2024-10-15 ⓒ ScienceTimes

태그(Tag)

관련기사

목록으로
연재 보러가기 사이언스 타임즈에서만 볼 수 있는
특별한 주제의 이야기들을 확인해보세요!

인기 뉴스 TOP 10

속보 뉴스

ADD : 06130 서울특별시 강남구 테헤란로7길 22, 4~5층(역삼동, 과학기술회관 2관) 한국과학창의재단
TEL : (02)555 - 0701 / 시스템 문의 : (02) 6671 - 9304 / FAX : (02)555 - 2355
정기간행물 등록번호 : 서울아00340 / 등록일 : 2007년 3월 26일 / 발행인 : 정우성 / 편집인 : 윤승재 / 청소년보호책임자 : 윤승재
한국과학창의재단에서 운영하는 모든 사이트의 콘텐츠는 저작권의 보호를 받는 바 무단전재, 복사, 배포 등을 금합니다.

사이언스타임즈는 과학기술진흥기금 및 복권기금의 지원으로 우리나라의 과학기술 발전과 사회적 가치 증진에 기여하고 있습니다.